COMPUTING SPEED FROM THE TACHOMETER

Here's a bit of technical trivia for those of you who might be interested.
Anytime you. change the tire diameter and/or the axle ratio on your vehicle you also change how far your car travels with each tum of the crankshaft. Each revolution of the tire creates a "stride" equal to the circumference of the tire.

If the crankshaft tums once for each revolution of the driving axle, then in a thousand revolutions the car would move a thousand tire circumferences. But the reciprocating, intemal combustion engine has to tum at a fairly high rate in order to obtain the torque needed to push a car. So00000-we have various crankshaft-to-axle ratios. The differential provides this transformation.

These equations assume an accurate tachometer, no clutch slippage, perfect gear mesh, and no tire slippage. True speed will be somewhat less; probably around 10%.

$$
\mathrm{Eq}_{\mathrm{q}}(\mathrm{~A}) \mathrm{MPH} / R P M(\div \text { thousand })=\frac{2.975 \times \text { Tire Diameter (in inches) }}{\text { Differential Ratio }}
$$

$$
\mathrm{Eq}_{\mathrm{q}}(\mathrm{~B}) \quad \mathrm{RPM}=\frac{M P H \times \text { Differential Ratio } \times 1,000}{2.975 \times \text { Tire Diameter }(\text { in inches })}
$$

$$
\text { Eq(C) } \quad M P H=\frac{2.975 \times \text { Tire Diameter (in inches) } \times R P M(\div \text { thousand })}{\text { Differential Ratio }}
$$

Examples: \quad Measured tire diameter $=22.25$ inches; Gear ratio $=4.222 / 1$
Eq (A) $\quad \mathrm{MPH} / \mathrm{RPM}(\div$ thousand $)=\frac{2.975 \times 22.25}{4.222}=15.68$
For each 1,000 RPM the car would go 15.68 MPH .
How many RPM $=55 \mathrm{MPH}$?
$E_{q}(B) \quad R P M=\frac{55 \times 4.222 \times 1,000}{2.975 \times 22.25}=3508 \mathrm{RPM}$
What is the speed at 5,000 RPM?
$\mathrm{Eq}(\mathrm{C}) \quad \mathrm{MPH}=\frac{2.975 \times 22.25 \times 5}{4.222}=78.4 \mathrm{MPH}$.

Bob Ritchie, Sept. 81

